The starting point for the estimation of the potential for biomass use in industry is the resource potential of biomass inputs.


World biomass supply cost curve for industrial process heat
production (ref. to final energy). UNIDO analysis.


Competition for biomass among different sectors

Iron and steel

Iron production requires the combustion of carbon-containing fuels to produce carbon monoxide which is reacted with ferrous oxide to produce iron and CO2. Historically, iron was produced using charcoal exclusively as fuel. At the beginning of the 18th century, charcoal started to be substituted by coke. Coke is now by far the dominant fuel in iron and steel making, with at least 10 Gt of coke being consumed per tonne of steel produced. Even so, significant amounts of pig iron are still successfully produced using charcoal.

Petrochemical feedstocks

Carbon is also needed for the production of materials in the petrochemical sector, where it comprises around 75% of the total feedstock.

The main alternative feedstock to fossil fuels in the petrochemical sector is likely to be biomass. But waste products, such as recycled plastics, can also substitute for some fossil fuel feedstock. Alternatively, organic materials such as cellulose fibers, coconut fibers, starch plastics, fibre boards and paper foams can be produced which can directly substitute for petrochemical products in end use applications, as described in Annex 3. It is also possible to produce textile materials (mainly viscose and acetate) from wood pulp and as by-products from cotton processing.


The transport sector is likely to be a significant competitor for any available biomass resource. If by 2050 biofuels are still the main option to displace fossil fuels from the transport sector, the availability of biomass for the industrial sector may be extremely limited. This would increase the attractiveness of other, non-biomass, renewable energy sources and of the further electrification of many industrial sectors. But at the same time, if biofuels increasingly replace petroleum fuels, this may free up large amounts of refinery-produced naphtha at low cost. In these circumstances, shifting away from naphtha as a petrochemical feedstock to alternative feedstocks or processes will be very difficult to achieve.


The Innovator

Gurmit Singh, New Delhi

Dr. Gurmit Singh is a research scientist and an environmentalist, his profound enthusiasm and passion for renewable energy technologies has been for 28 years now. He holds both his Bachelors and Masters degrees from 'Rheinisch-Westfalische Technische Hochschule Aachen.' In Germany and spent 14 years in Germany working as a research Scientist and then 8 years in Florida, USA in Solar Research. He is winner of 'Lockheed Martin Innovation Award 2008' in renewable energy, also won the '2010 BuildArch Award'and recently won the 'i3 India Innovates Award 2011'. His professional career started with a technology assessment of the carbon abatement potential of specific industrial technologies in the EU, and the evaluation of national and international policies and measures in the areas of climate change, energy efficiency and renewable energy. Currently he is a Visiting Faculty for 'Renewable Energy' at Amity University, Noida